Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m

نویسندگان

  • Marie-Julie Lambert
  • François Waldner
  • Pierre Defourny
چکیده

Early warning systems for food security require accurate and up-to-date information on the location of major crops in order to prevent hazards. A recent systematic analysis of existing cropland maps identified priority areas for cropland mapping and highlighted a major need for the Sahelian and Sudanian agrosystems. This paper proposes a knowledge-based approach to map cropland in the Sahelian and Sudanian agrosystems that benefits from the 100-m spatial resolution of the recent PROBA-V sensor. The methodology uses five temporal features characterizing crop development throughout the vegetative season to optimize cropland discrimination. A feature importance analysis validates the efficiency of using a diversity of temporal features. The fully-automated method offers the first cropland map at 100-m using the PROBA-V sensor with an overall accuracy of 84% and an F-score for the cropland class of 74%. The improvements observed compared to existing cropland products are related to the hectometric resolution, to the methodology and to the quality of the labeling layer from which reliable training samples were automatically extracted. Classification errors are mainly explained by data availability and landscape fragmentation. Further improvements are expected with the upcoming enhanced cloud screening of the PROBA-V sensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series

Cropland mapping relies heavily on field data for algorithm calibration, making it, in many cases, applicable only at the field campaign scale. While the recently launched Sentinel-2 satellite will be able to deliver time series over large regions, it will not really be compatible with the current mapping approach or the available in situ data. This research introduces a generic methodology for...

متن کامل

Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria

The monitoring of crops is of vital importance for food and environmental security in a global and European context. The main goal of this study was to assess the crop mapping performance provided by the 100 m spatial resolution of PROBA-V compared to coarser resolution data (e.g., PROBA-V at 300 m) for a 2250 km test site in Bulgaria. The focus was on winter and summer crop mapping with three ...

متن کامل

Evaluating the Potential of PROBA-V Satellite Image Time Series for Improving LC Classification in Semi-Arid African Landscapes

Satellite based land cover classification for Africa’s semi-arid ecosystems is hampered commonly by heterogeneous landscapes with mixed vegetation and small scale land use. Higher spatial resolution remote sensing time series data can improve classification results under these difficult conditions. While most large scale land cover mapping attempts rely on moderate resolution data, PROBA-V prov...

متن کامل

Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China

PROBA-V is a new global vegetation monitoring satellite launched in the second quarter of 2013 that provides data with a 100 m to 1 km spatial resolution and a daily to 10-day temporal resolution in the visible and near infrared (VNIR) bands. A major mission of the PROBA-V satellite is global agriculture monitoring, in which the accuracy of crop mapping plays a key role. In countries such as Ch...

متن کامل

Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended from PROBA-V 100- and 300-m S1 Products

Monitoring crop areas and yields is crucial for food security and agriculture management across the world. In this paper, we mapped the biomass and yield of winter wheat using the new Project for On-Board Autonomy-Vegetation (PROBA-V) products in the North China Plain (NCP). First, the daily 100-m land surface reflectance was generated by fusing the PROBA-V 100-m and 300-m S1 products. Our resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016